3.71 \(\int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=86 \[ \frac{\sqrt{2} \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d} \]

[Out]

(-2*Sqrt[a]*A*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d + (Sqrt[2]*Sqrt[a]*(A - I*B)*ArcTanh[Sqrt[a + I*a
*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d

________________________________________________________________________________________

Rubi [A]  time = 0.227318, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 34, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.176, Rules used = {3600, 3480, 206, 3599, 63, 208} \[ \frac{\sqrt{2} \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(-2*Sqrt[a]*A*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d + (Sqrt[2]*Sqrt[a]*(A - I*B)*ArcTanh[Sqrt[a + I*a
*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d

Rule 3600

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[((a + b*Tan[e + f*x])^m*(a - b*Tan[e + f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} (A+B \tan (c+d x)) \, dx &=\frac{A \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)} \, dx}{a}+(i A+B) \int \sqrt{a+i a \tan (c+d x)} \, dx\\ &=\frac{(a A) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{d}+\frac{(2 a (A-i B)) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=\frac{\sqrt{2} \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{(2 i A) \operatorname{Subst}\left (\int \frac{1}{i-\frac{i x^2}{a}} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac{2 \sqrt{a} A \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{\sqrt{2} \sqrt{a} (A-i B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 1.64546, size = 113, normalized size = 1.31 \[ \frac{e^{-i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \sqrt{a+i a \tan (c+d x)} \left ((A-i B) \sinh ^{-1}\left (e^{i (c+d x)}\right )-\sqrt{2} A \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{1+e^{2 i (c+d x)}}}\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]]*(A + B*Tan[c + d*x]),x]

[Out]

(Sqrt[1 + E^((2*I)*(c + d*x))]*((A - I*B)*ArcSinh[E^(I*(c + d*x))] - Sqrt[2]*A*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)
))/Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

________________________________________________________________________________________

Maple [B]  time = 0.414, size = 312, normalized size = 3.6 \begin{align*} -{\frac{\sin \left ( dx+c \right ) }{d \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) }\sqrt{{\frac{a \left ( i\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) \right ) }{\cos \left ( dx+c \right ) }}}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( iA\arctan \left ({\frac{\sqrt{2}}{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}+iB{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( dx+c \right ) }{2\,\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}+iA\arctan \left ({\frac{1}{\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}}} \right ) -A{\it Artanh} \left ({\frac{\sqrt{2}\sin \left ( dx+c \right ) }{2\,\cos \left ( dx+c \right ) }\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}+B\arctan \left ({\frac{\sqrt{2}}{2}\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}} \right ) \sqrt{2}-A\ln \left ( -{\frac{1}{\sin \left ( dx+c \right ) } \left ( -\sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +\cos \left ( dx+c \right ) -1 \right ) } \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(I*A*arctan(1/2*2^(1/
2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)+I*B*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*
sin(d*x+c)/cos(d*x+c))*2^(1/2)+I*A*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-A*arctanh(1/2*2^(1/2)*(-2*co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*2^(1/2)+B*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+
1))^(1/2))*2^(1/2)-A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c)))*sin(d*x+
c)/(I*sin(d*x+c)+cos(d*x+c)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.55173, size = 1139, normalized size = 13.24 \begin{align*} -\sqrt{\frac{A^{2} a}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left (A e^{\left (2 i \, d x + 2 i \, c\right )} + A\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} + 2 \, \sqrt{\frac{A^{2} a}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{A}\right ) + \sqrt{\frac{A^{2} a}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left (A e^{\left (2 i \, d x + 2 i \, c\right )} + A\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} - 2 \, \sqrt{\frac{A^{2} a}{d^{2}}} d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{A}\right ) + \frac{1}{2} \, \sqrt{\frac{{\left (2 \, A^{2} - 4 i \, A B - 2 \, B^{2}\right )} a}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} + i \, d \sqrt{\frac{{\left (2 \, A^{2} - 4 i \, A B - 2 \, B^{2}\right )} a}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) - \frac{1}{2} \, \sqrt{\frac{{\left (2 \, A^{2} - 4 i \, A B - 2 \, B^{2}\right )} a}{d^{2}}} \log \left (\frac{{\left (\sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A + B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (i \, d x + i \, c\right )} - i \, d \sqrt{\frac{{\left (2 \, A^{2} - 4 i \, A B - 2 \, B^{2}\right )} a}{d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{i \, A + B}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

-sqrt(A^2*a/d^2)*log((sqrt(2)*(A*e^(2*I*d*x + 2*I*c) + A)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) +
2*sqrt(A^2*a/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/A) + sqrt(A^2*a/d^2)*log((sqrt(2)*(A*e^(2*I*d*x
+ 2*I*c) + A)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(A^2*a/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(
-2*I*d*x - 2*I*c)/A) + 1/2*sqrt((2*A^2 - 4*I*A*B - 2*B^2)*a/d^2)*log((sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) +
 I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + I*d*sqrt((2*A^2 - 4*I*A*B - 2*B^2)*a/d^2)*e^(2*I
*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B)) - 1/2*sqrt((2*A^2 - 4*I*A*B - 2*B^2)*a/d^2)*log((sqrt(2)*((I*A
+ B)*e^(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - I*d*sqrt((2*A^2 - 4*I*
A*B - 2*B^2)*a/d^2)*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/(I*A + B))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )} \left (A + B \tan{\left (c + d x \right )}\right ) \cot{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))**(1/2)*(A+B*tan(d*x+c)),x)

[Out]

Integral(sqrt(a*(I*tan(c + d*x) + 1))*(A + B*tan(c + d*x))*cot(c + d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )} \sqrt{i \, a \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+I*a*tan(d*x+c))^(1/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*sqrt(I*a*tan(d*x + c) + a)*cot(d*x + c), x)